412 research outputs found

    Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable brassica fields in Nepal

    Get PDF
    Black rot caused by Xanthomonas campestris pv. campestris was found in 28 sampled cabbage fields in five major cabbage-growing districts in Nepal in 2001 and in four cauliflower fields in two districts and a leaf mustard seed bed in 2003. Pathogenic X. campestris pv. campestris strains were obtained from 39 cabbage plants, 4 cauliflower plants, and 1 leaf mustard plant with typical lesions. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) using repetitive extragenic palindromic, enterobacterial repetitive intergenic consensus, and BOX primers was used to assess the genetic diversity. Strains were also race typed using a differential series of Brassica spp. Cabbage strains belonged to five races (races 1, 4, 5, 6, and 7), with races 4, 1, and 6 the most common. All cauliflower strains were race 4 and the leaf mustard strain was race 6. A dendrogram derived from the combined rep-PCR profiles showed that the Nepalese X. campestris pv. campestris strains clustered separately from other Xanthomonas spp. and pathovars. Race 1 strains clustered together and strains of races 4, 5, and 6 were each split into at least two clusters. The presence of different races and the genetic variability of the pathogen should be considered when resistant cultivars are bred and introduced into regions in Nepal to control black rot of brassicas

    Vitex agnus-castus L.: main features and nutraceutical perspectives

    Get PDF
    Medicinal plants are used worldwide due to their lower risk of side effects and eco-friendly, cost-effective production when compared to chemical drugs, encouraging researchers to further exploit the therapeutic potential of the former. One of the most popular medicinal plants is Vitex agnus-castus L., grown in tropical and sub-tropical regions, to which different health benefits have already been attributed. In this perspective article, the in vitro and in vivo therapeutic properties of V. agnus-castus L. have been analyzed and reviewed with a special focus on its health-promoting effects and potential nutraceutical applications.The authors acknowledge the support of the research project: Nutraceutica come supporto nutrizionale nel paziente oncologico, CUP: B83D18000140007. E.B.S. acknowledges the sponsorship of the projects M-ERA-NET-0004/2015-PAIRED and UIDB/04469/2020 (strategic fund); A.M.S. acknowledges UIDB/04033/2020 (CITAB), receiving support from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, and co-financed by FEDER under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio

    Hawthorn (Crataegus spp.): an updated overview on its beneficial properties

    Get PDF
    Medicinal plants, many of which are wild, have recently been under the spotlight worldwide due to growing requests for natural and sustainable eco-compatible remedies for pathological conditions with beneficial health effects that are able to support/supplement a daily diet or to support and/or replace conventional pharmacological therapy. The main requests for these products are: safety, minimum adverse unwanted effects, better efficacy, greater bioavailability, and lower cost when compared with synthetic medications available on the market. One of these popular herbs is hawthorn (Crataegus spp.), belonging to the Rosaceae family, with about 280 species present in Europe, North Africa, West Asia, and North America. Various parts of this herb, including the berries, flowers, and leaves, are rich in nutrients and beneficial bioactive compounds. Its chemical composition has been reported to have many health benefits, including medicinal and nutraceutical properties. Accordingly, the present review gives a snapshot of the in vitro and in vivo therapeutic potential of this herb on human health.The authors acknowledge the support of the research project: Nutraceutica come supporto nutrizionale nel paziente oncologico, CUP: B83D18000140007. E. B. Souto acknowledges the sponsorship of the projects M-ERA-NET-0004/2015-PAIRED and UIDB/04469/2020 (strategic fund), receiving support from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, and co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio

    Sage species case study on a spontaneous mediterranean plant to control phytopathogenic fungi and bacteria

    Get PDF
    Sage species belong to the family of Labiatae/Lamiaceae and are diffused worldwide. More than 900 species of sage have been identified, and many of them are used for different purposes, i.e., culinary uses, traditional medicines and natural remedies and cosmetic applications. Another use of sage is the application of non-distilled sage extracts and essential oils to control phytopathogenic bacteria and fungi, for a sustainable, environmentally friendly agriculture. Biocidal propriety of non-distilled extracts and essential oils of sage are w documented. Antimicrobial effects of these sage extracts/essential oils depend on both sage species and bacteria and fungi species to control. In general, it is possible to choose some specific extracts/essential oils to control specific phytopathogenic bacteria or fungi. In this context, the use of nanotechnology techniques applied to essential oil from salvia could represent a future direction for improving the performance of eco-compatible and sustainable plant defence and represents a great challenge for the future.The authors acknowledge the support of the research project: Nutraceutica come supporto nutrizionale nel paziente oncologico, CUP: B83D18000140007. E.B.S. acknowledges the sponsorship of the projects M-ERA-NET-0004/2015-PAIRED and UIDB/04469/2020 (strategic fund), receiving support from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, and co-financed by FEDER, under the Partnership Agreement PT2020. The authors also acknowledge Agricultural Department of Campania Region (Italy) for financial support.info:eu-repo/semantics/publishedVersio

    Does MtN5 play a double role in root responses to symbiontic and pathogenic microorganisms?

    Get PDF
    MtN5, a new Lipid Transfer Protein, has been identified in nodulated roots of Medicago truncatula andpreliminarily classified as early nodulin, which is expressed in response to rhizobial symbiosis. Wehave shown that the recombinant MtN5 exerts antifungal and antimicrobial activity in vitro againstFusarium semitectum and Rhizobium leguminosarum, respectively. In vivo, the fungal infection leadsto the expression of MtN5 in the whole root apparatus of M. truncatula plants, whereas the inoculationwith rhizobia induces an early and nodule-specific expression of the protein, that is also maintained inmature nodules. These two different expression patterns suggest a putative double role for MtN5, whichcould be involved both in a general response mechanism against fungi and in sensing or controlling theinfection of the symbiont. This last hypothesis is supported by the observation that M.truncatula rootstransformed with an hairpin construct aiming to silence endogenous MtN5, are impaired in noduleformation respect to control roots. Therefore, MtN5 is hereby proposed as a novel, multifunctionalprotein taking part in the symbiotic process

    Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role

    Get PDF
    Medicinal plants always are part of folk medicine and are nowadays receiving worldwide attention for prophylaxis, management, and treatment of several diseases, as an alternative to chemical drugs. The current work provided a comprehensive overview and analysis of the Astragalus and health relationship in literature. The analysis of their therapeutic potential is thus instrumental to understand their bioactivity. Among these, the flowering medicinal plant Astragalus membranaceus has raised interest due to several beneficial health effects. This perspective review discussed the botanical, geographical, historical, and the therapeutic properties of A. membranaceus, with a special focus on its health improving effects and medicinal applications both in vitro and in vivo.Funding provided by Università degli Studi di Napoli Federico II within the CRUI-CARE Agreementinfo:eu-repo/semantics/publishedVersio

    The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity

    Get PDF
    addresses: Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.notes: PMCID: PMC3161960types: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain

    The INCREASE project: Intelligent Collections of food‐legume genetic resources for European agrofood systems

    Get PDF
    Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources
    corecore